Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Commun ; 13(1): 7675, 2022 12 12.
Article in English | MEDLINE | ID: covidwho-2160208

ABSTRACT

Although ocular manifestations are reported in patients with COVID-19, consensus on ocular tropism of SARS-CoV-2 is lacking. Here, we infect K18-hACE2 transgenic mice with SARS-CoV-2 using various routes. We observe ocular manifestation and retinal inflammation with production of pro-inflammatory cytokines in the eyes of intranasally (IN)-infected mice. Intratracheal (IT) infection results in dissemination of the virus from the lungs to the brain and eyes via trigeminal and optic nerves. Ocular and neuronal invasions are confirmed using intracerebral (IC) infection. Notably, the eye-dropped (ED) virus does not cause lung infection and becomes undetectable with time. Ocular and neurotropic distribution of the virus in vivo is evident in fluorescence imaging with an infectious clone of SARS-CoV-2-mCherry. The ocular tropic and neuroinvasive characteristics of SARS-CoV-2 are confirmed in wild-type Syrian hamsters. Our data can improve the understanding regarding viral transmission and clinical characteristics of SARS-CoV-2 and help in improving COVID-19 control procedures.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Mice , Animals , Disease Models, Animal , Mice, Transgenic , Lung , Mesocricetus , Inflammation
2.
mBio ; 13(3): e0068322, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1788919

ABSTRACT

Compared to the original ancestral strain of SARS-CoV-2, the Delta variant of concern has shown increased transmissibility and resistance toward COVID-19 vaccines and therapies. However, the pathogenesis of the disease associated with Delta is still not clear. In this study, using K18-hACE2 transgenic mice, we assessed the pathogenicity of the Delta variant by characterizing the immune response following infection. We found that Delta induced the same clinical disease manifestations as the ancestral SARS-CoV-2, but with significant dissemination to multiple tissues, such as brain, intestine, and kidney. Histopathological analysis showed that tissue pathology and cell infiltration in the lungs of Delta-infected mice were the same as in mice infected with the ancestral SARS-CoV-2. Delta infection caused perivascular inflammation in the brain and intestinal wall thinning in K18-hACE2 transgenic mice. Increased cell infiltration in the kidney was observed in both ancestral strain- and Delta-infected mice, with no clear visible tissue damage identified in either group. Interestingly, compared with mice infected with the ancestral strain, the numbers of CD45+ cells, T cells, B cells, inflammatory monocytes, and dendritic cells were all significantly lower in the lungs of the Delta-infected mice, although there was no significant difference in the levels of proinflammatory cytokines between the two groups. Our results showed distinct immune response patterns in the lungs of K18-hACE2 mice infected with either the ancestral SARS-CoV-2 or Delta variant of concern, which may help to guide therapeutic interventions for emerging SARS-CoV-2 variants. IMPORTANCE SARS-CoV-2 variants, with the threat of increased transmissibility, infectivity, and immune escape, continue to emerge as the COVID-19 pandemic progresses. Detailing the pathogenesis of disease caused by SARS-CoV-2 variants, such as Delta, is essential to better understand the clinical threat caused by emerging variants and associated disease. This study, using the K18-hACE2 mouse model of severe COVID-19, provides essential observation and analysis on the pathogenicity and immune response of Delta infection. These observations shed light on the changing disease profile associated with emerging SARS-CoV-2 variants and have potential to guide COVID-19 treatment strategies.


Subject(s)
COVID-19 Drug Treatment , Hepatitis D , Animals , COVID-19 Vaccines , Disease Models, Animal , Humans , Melphalan , Mice , Mice, Transgenic , Pandemics , SARS-CoV-2/genetics , gamma-Globulins
3.
Bone Jt Open ; 2(10): 871-878, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1477504

ABSTRACT

AIMS: This study aimed to evaluate whether an enhanced recovery protocol (ERP) for arthroplasty established during the COVID-19 pandemic at a safety net hospital can be associated with a decrease in hospital length of stay (LOS) and an increase in same-day discharges (SDDs) without increasing acute adverse events. METHODS: A retrospective review of 124 consecutive primary arthroplasty procedures performed after resuming elective procedures on 11 May 2020 were compared to the previous 124 consecutive patients treated prior to 17 March 2020, at a single urban safety net hospital. Revision arthroplasty and patients with < 90-day follow-up were excluded. The primary outcome measures were hospital LOS and the number of SDDs. Secondary outcome measures included 90-day complications, 90-day readmissions, and 30day emergency department (ED) visits. RESULTS: The mean LOS was significantly reduced from 2.02 days (SD 0.80) in the pre-COVID cohort to 1.03 days (SD 0.65) in the post-COVID cohort (p < 0.001). No patients in the pre-COVID group were discharged on the day of surgery compared to 60 patients (48.4%) in the post-COVID group (p < 0.001). There were no significant differences in 90-day complications (13.7% (n = 17) vs 9.7% (n = 12); p = 0.429), 30-day ED visits (1.6% (n = 2) vs 3.2% (n = 4); p = 0.683), or 90-day readmissions (2.4% (n = 3) vs 1.6% (n = 2); p = 1.000) between the pre-COVID and post-COVID groups, respectively. CONCLUSION: Through use of an ERP, arthroplasty procedures were successfully resumed at a safety net hospital with a shorter LOS and increased SDDs without a difference in acute adverse events. The resulting increase in healthcare value therefore may be considered a 'silver lining' to the moratorium on elective arthroplasty during the COVID-19 pandemic. These improved efficiencies are expected to continue in post-pandemic era. Cite this article: Bone Jt Open 2021;2(10):871-878.

4.
Calcif Tissue Int ; 109(3): 291-302, 2021 09.
Article in English | MEDLINE | ID: covidwho-1366347

ABSTRACT

Osteoarthritis (OA) is one of the most prevalent conditions in the world, particularly in the developed world with a significant increase in cases and their predicted impact as we move through the twenty-first century and this will be exacerbated by the covid pandemic. The degeneration of cartilage and bone as part of this condition is becoming better understood but there are still significant challenges in painting a complete picture to recognise all aspects of the condition and what treatment(s) are most appropriate in individual causes. OA encompasses many different types and this causes some of the challenges in fully understanding the condition. There have been examples through history where much has been learnt about common disease(s) from the study of rare or extreme phenotypes, particularly where Mendelian disorders are involved. The often early onset of symptoms combined with the rapid and aggressive pathogenesis of these diseases and their predictable outcomes give an often-under-explored resource. It is these "rarer forms of disease" that William Harvey referred to that offer novel insights into more common conditions through their more extreme presentations. In the case of OA, GWAS analyses demonstrate the multiple genes that are implicated in OA in the general population. In some of these rarer forms, single defective genes are responsible. The extreme phenotypes seen in conditions such as Camptodactyly Arthropathy-Coxa Vara-pericarditis Syndrome, Chondrodysplasias and Alkaptonuria all present potential opportunities for greater understanding of disease pathogenesis, novel therapeutic interventions and diagnostic imaging. This review examines some of the rarer presenting forms of OA and linked conditions, some of the novel discoveries made whilst studying them, and findings on imaging and treatment strategies.


Subject(s)
COVID-19 , Coxa Vara , Osteoarthritis , Synovitis , Humans , Osteoarthritis/genetics , SARS-CoV-2
5.
mBio ; 12(2)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195827

ABSTRACT

Newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic, which has caused extensive mortality and morbidity and wreaked havoc on socioeconomic structures. The urgent need to better understand SARS-CoV-2 biology and enable continued development of effective countermeasures is aided by the production of laboratory tools that facilitate SARS-CoV-2 research. We previously created a directly accessible SARS-CoV-2 toolkit containing user-friendly reverse genetic (RG) infectious clones of SARS-CoV-2. Here, using K18-human ACE2 (hACE2) mice, we confirmed the validity of RG-rescued SARS-CoV-2 viruses to reproduce the infection profile, clinical disease, and pathogenesis already established in mice infected with natural SARS-CoV-2 isolates, often patient derived. RG-rescued SARS-CoV-2-infected K18-hACE2 mice developed substantial clinical disease and weight loss by day 6 postinfection. RG-rescued SARS-CoV-2 was recovered from the lungs and brains of infected K18-hACE2 mice, and infection resulted in viral pneumonia with considerable changes in lung pathology, as seen previously with natural SARS-CoV-2 infection. In mice infected with RG-rescued SARS-CoV-2-mCherry, mCherry was detected in areas of lung consolidation and colocalized with clinically relevant SARS-CoV-2-assocated immunopathology. RG-rescued SARS-CoV-2 viruses successfully recapitulated many of the features of severe COVID-19 associated with the K18-hACE2 model of SARS-CoV-2 infection. With utility in vivo, the RG-rescued SARS-CoV-2 viruses will be valuable resources to advance numerous areas of SARS-CoV-2 basic research and COVID-19 vaccine development.IMPORTANCE To develop COVID-19 countermeasures, powerful research tools are essential. We produced a SARS-COV-2 reverse genetic (RG) infectious clone toolkit that will benefit a variety of investigations. In this study, we further prove the toolkit's value by demonstrating the in vivo utility of RG-rescued SARS-CoV-2 isolates. RG-rescued SARS-CoV-2 isolates reproduce disease signs and pathology characteristic of the K18-hACE2 mouse model of severe COVID-19 in infected mice. Having been validated as a model of severe COVID-19 previously using only natural SARS-CoV-2 isolated from patients, this is the first investigation of RG-rescued SARS-CoV-2 viruses in K18-hACE2 mice. The RG-rescued SARS-CoV-2 viruses will facilitate basic understanding of SARS-CoV-2 and the preclinical development of COVID-19 therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/etiology , SARS-CoV-2/pathogenicity , Animals , COVID-19/pathology , COVID-19/virology , Cytokine Release Syndrome/etiology , Disease Models, Animal , Female , Host Microbial Interactions , Humans , Inflammation Mediators/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/etiology , Pneumonia, Viral/virology , Reverse Genetics/methods , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Tropism , Virus Replication
6.
mBio ; 12(1)2021 02 09.
Article in English | MEDLINE | ID: covidwho-1075940

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the globe at unprecedented speed and is showing no signs of slowing down. The outbreak of coronavirus disease 2019 (COVID-19) has led to significant health burden in infected patients especially in those with underlying comorbidities. The aim of this study was to evaluate the correlation between comorbidities and their role in the exacerbation of disease in COVID-19 patients leading to fatal outcomes. A systematic review was conducted using data from MEDLINE, Scopus, Web of Science, and EMBASE databases published from 1 December 2019 to 15 September 2020. Fifty-three articles were included in the systematic review. Of those 53 articles, 8 articles were eligible for meta-analysis. Hypertension, obesity, and diabetes mellitus were identified to be the most prevalent comorbidities in COVID-19 patients. Our meta-analysis showed that cancer, chronic kidney diseases, diabetes mellitus, and hypertension were independently associated with mortality in COVID-19 patients. Chronic kidney disease was statistically the most prominent comorbidity leading to death. However, despite having high prevalence, obesity was not associated with mortality in COVID-19 patients.IMPORTANCE COVID-19 has plagued the world since it was first identified in December 2019. Previous systematic reviews and meta-analysis were limited by various factors such as the usage of non-peer reviewed data and were also limited by the lack of clinical data on a global scale. Comorbidities are frequently cited as risk factors for severe COVID-19 outcomes. However, the degree to which specific comorbidities impact the disease is debatable. Our study selection involves a global reach and covers all comorbidities that were reported to be involved in the exacerbation of COVID-19 leading to fatal outcomes, which allows us to identify the specific comorbidities that have higher risk in patients. The study highlights COVID-19 high-risk groups. However, further research should focus on the status of comorbidities and prognosis in COVID-19 patients.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , COVID-19/mortality , COVID-19/pathology , Comorbidity , Hospitalization , Humans , Prevalence , Risk Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL